IOS and DPM: Simulation tools for exploring and understanding factors influencing Central Valley Chinook salmon populations

Brad Cavallo
Paul Bergman
Kris Jones
Steve Zeug
Joe Merz

Funding for model development:
Department of Water Resources
Metropolitan Water District
State Water Contractors
National Marine Fisheries Service
Nature Conservancy

What data is available for winter run Chinook salmon?

Life Stage	Location	Timeseries of abundance data available?
Eggs	Up-river	
Fry	Up-river Mid-river Delta	X
Parr	Up-river Mid-river Delta	X
Smolts	Mid-river Delta	
Smolts	Bay	
Sub-Adult	Ocean	
Adult	Ocean Spawners	X

What data is available for winter run Chinook salmon?

Life Stage	Location	Timeseries of abundance data available?	Mechanistic (short term) studies available?
Eggs	Up-river		Х
Fry	Up-river Mid-river Delta	X	X
Parr	Up-river Mid-river Delta	X	X X
Smolts	Mid-river Delta		X X
Smolts	Bay		X
Sub-Adult	Ocean		x
Adult	Ocean Spawners	X	х

What data is available for winter run Chinook salmon?

	Life Stage	Location	Timeseries of abundance data available?	Mechanistic (short term) studies available?	Combined
	Eggs	Up-river		х	х
	Fry	Up-river Mid-river Delta	Х	X	Х
Marting Martin	Parr	Up-river Mid-river Delta	Х	X X	X X X
	Smolts	Mid-river Delta		X X	X X
Constitution (Constitution of the Constitution	Smolts	Bay		х	х
	Sub-Adult	Ocean		х	х
	Adult	Ocean Spawners	Х	х	X X

Statistical Models

Simulation Models

$$L(\theta \mid R_k, n_j) \propto \prod_{j=1}^{912} \pi_j^{n_j}$$

Statistical Models

- Parameter values obtained by fitting model to available historic data
- Fewer parameters
- Identify critical factors driving past population trends, provide "real world" predictions
- Static

Examples:

Jolly-Seber mark-recapture Generalized linear Bayesian nonlinear hierarchical

Simulation Models

- Parameter values based on empirical, statistical, and theoretical data
- More parameters
- Experimental system, compare relative performance of simulated management actions
- Adaptable, modular

Examples:

bioenergetics predator-prey individual-oriented life cycle

Concepts

Purpose of our simulation models:

- Formalize and clarify thinking
- Allow comparison (relative) between alternative management actions
 - not predictions of past or future population trends

Concepts

Attributes of our simulation models:

- Intuitive: data and relationships familiar to biologists
- Mechanistic: emphasize dynamic response of fish to alternative management scenarios
- <u>Transparent</u>: logic and functional relationships transparent and accessible
- Adaptive: Model can be easily modified to include new data or relationships

Simulation Models Related to Operations and RPAs

Juvenile Production Estimate (JPE) Model

Species: Winter run Chinook salmon

Life stages: Adult to Parr

Location: Upriver to Mid-river

Physical Inputs: Daily river flow (CALSIM II → USRDOM)
Daily river flow (USRDOM → USRWQM)

Conservation Measures: Modify survival functions

Models Related to Operations and RPAs

Delta Passage Model (DPM)

Species: Winter, Spring and Fall run Chinook

Life stages: parr to smolt

Location: Mid-river to Bay

Physical Inputs:

reach-specific daily flow (DSM2 Hydro) daily exports (CALSIM II) daily gate operations (CALSIM II)

Conservation Measures: Modify survival functions and/or fish route selection

Models Related to Operations and RPAs

So we have JPE and DPM models...

...then what is IOS?

Models Related to Operations and RPAs

IOS = JPE + DPM + Ocean

- Integrative Object-oriented Salmon Simulation (IOS)
- Assimilates available information and integrates effects across life stages and through years
- An Individual-oriented model (but not IBM)

Only winter run Chinook salmon (currently)

The JPE Model

- Simulation based model, puts together a series of statistical models and relationships
- Individual cohorts of fish experience daily time steps

The JPE Model

- Four main components of the JPE
 - 1) Spawning
 - 2) Egg Incubation
 - 3) Rearing
 - 4) Juvenile Emigration

- Spawning Distribution
 - Used daily carcass counts to determine spawning distribution
 - Timing shifted 14 days prior to carcass observations

Data: Doug Killam Carcass Survey data

- Stock-Recruitment
 - Stock: number of female spawners from carcass surveys
 - Recruitment: fry equivalent at RSTs

Data: Poytress and Carillo, USFWS Reports

- Egg Mortality
 - Fertilization to Emergence
 - Applied mortality to cohorts when temps go beyond 57°F

Data from: USFWS 1999

Egg Maturation

- Fertilization to Emergence
- Ran regression and derived predicted values from experimental data
- Standard errors derived from regression analysis
- Relationship used to inform daily time step

Data from: USFWS 1999

- Rearing mortality
 - Fry to smolt stage
 - Smolts considered >75mm
 - Applied mortality to cohorts on a daily time step

Data from: USFWS 1999

Delta Passage Model (DPM)

Integrates and applies best available empirical data from analyses of acoustic and coded wire tag studies in the Delta

Delta Passage Model (DPM)

Operates on a daily time step, using daily average flows (DSM2 Hydro) for primary migration routes

Most functional relationships structured as probability distributions

DPM Conceptual Model

Survival
Migration Speed
Migration Route

Inflows
Exports
Barriers

Critical DPM Information Sources

Major Function	Primary Sources	Method Description	
(1) Route seleciton at junctions	Perry (2010); Holbrook et al. 2009	Analysis of acoustically tagged smolts in the North Delta	
(2) Reach-specific survival	a) Burau et al. 2007; SJRGA 2009; Perry 2010	a) Reach-specific survival estimates from acoustically tagged smolts in the Delta	
	b) Newman and Rice 2002; Newman 2003, Newman 2008	b) Statistical analysis of coded-wire tagged smolts	
(3) Migration speed	Vogel 2008	Migration speed of acoustically tagged smolts in the North Delta	
(4) South Delta export mortality	Newman and Brandes 2009	Analysis of coded-wire tagged smolts	

DPM Functional Relationships Flow-survival (Sacramento River Routes)

DPM Functional Relationships Fish route allocation at Georgiana Slough/DCC

Newman and Brandes 2009, p. 35

Ocean

- Not directly related to water project operations or NMFS RPAs (as proposed in 2009 BiOp), but...
 - Important for context
 - Necessary for life cycle model
 - Necessary to account for population effects resulting from inland management actions

Ocean

- Smolt to Age-2 Survival
 - 2% to 6% (stochastic uniform distribution)
- Age-2 Survival
 - 2% to 34% (auto-correlated stochastic survival scalar based on Wells Index)

Ocean

- Age-3 Survival
 - 20% (constant)
- Age-3 Harvest Mortality
 - 0% to 39% (stochastic, uniform distribution)

Model Applications

<u>IOS</u>

- OCAP Biological Assessment
- BDCP
- North-of-Delta Off-stream Storage (in progress)

DPM

- OCAP BiOp evaluations
- Two-Gates Project
- BDCP
- North-of-Delta-Offstream-Storage (in progress)
- Franks Tract Project (future)

Model Results

- Example of how model results commonly reported
- But for understanding how the model works, sensitivity analysis is more useful

Sensitivity Analysis: Water Year Type

Egg to Fry Survival by Water Year

Sensitivity Analysis: Water Year Type

Sensitivity Analysis: Water Year Type

Spawning Escapement by Water Year

Sensitivity Analysis: Life Stage Functions

Sensitivity Analysis: Life Stage Functions

Sensitivity Analysis: Delta Survival

Example Application: Gaming Potential Management Actions

Delta Survival (probabilistic simulations)

Overall Conclusions

 Simulation models can be useful for integrating available science and telling us what matters most

What is IOS telling us?

- Water year type is an important driver
 - manage *for* inflows, temperatures, and improved Delta habitat?
 - less emphasis on exports?
- Ocean factors are huge
 - but we only control harvest

How do we know the simulation model is "right"?

- Validation?
 - Not feasible for most simulation models
- What can we do?
 - Calibrate and test model components with empirical data
 - Carefully review and critique underlying logic
 - Explore and test model sensitivity
 - Include uncertainty in model

Critical Uncertainties

- Survival-flow effect
 - Some analyses show positive flow effect, but thresholds and mechanisms uncertain
 - decreased residence time (due to higher velocities) or decreased predator efficiency (due to turbidity)?
- Contribution of different life history strategies
 - fry emigrants vs. smolts

What next?

- Preparing IOS manuscript
- Model enhancements underway
 - Floodplain use, capacity and benefits
 - Refined use of DSM2 Hydro for fish route selection and survival
- Continue and expand collaborations with resource agency biologists